Chapter 27 Review: Current and
by Nicolas Beiner

Resistance

Background / Summary:

A fundamental part of daily life is technology that utilizes electricity. Breaking down these technologies to their simplest origins takes us to simple electrical circuits, voltmeters, batteries, resistors, and more.

Key Ideas and Points for the Subject:

- Current is the number of charges going through a specific area during a given span of time.
- Electromotive force (\mathcal{E}) is what creates the electric field that motivates the movement of charges through the circuit.
- Resistors limit the current and can convert electrical energy into other types of energy.
*Current is measured in amps, ε is measured in volts, resistance in ohms (\square) and power is measured in Watts.

Key Equations and Relationships:
$\mathrm{I}=\triangle \mathrm{V} / \mathrm{R}$
$\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$

Kirchhoff's Law:

$\boldsymbol{\Sigma} \mathrm{i}_{\text {input }}=\boldsymbol{\Sigma} \mathrm{i}_{\text {output }}$

* $\triangle V_{\mathrm{R}}=\mathrm{V}_{\mathrm{R}}$
*The voltage over a resistor is the same as the voltage of said resistor

Problem Set:

1. [Easy] Suppose that the charge in a wire varies with time according to the equation:
$q=6 t^{2}+9 t+4$. Create an expression for the current through the wire as a function of time, and then come up with the current at 3.00 seconds.
2. [Medium] An LED light bulb is rated at 145 volts and 90 Watts. Assuming we use a 145 -volt power supply to power the bulb, what would the current in the bulb be? What is the resistance of the bulb?

3. [Hard] As displayed in the diagram above, four resistors are connected to a 14 -volt battery. $\mathrm{R}_{1}=10 \square, \mathrm{R}_{2}=3 \square, \mathrm{R}_{3}=4 \square$, and $\mathrm{R}_{4}=6 \square$. What is the $\mathrm{R}_{\text {equivalent }}$ of all four resistors? When connected to the battery, how much current and power is drawn?

Solutions:

1. Known values:

$$
q=6 t^{2}+9 t+4
$$

To solve this problem, we must use the relationship $\mathrm{I}=\mathrm{dQ} / \mathrm{dt}$

$$
\mathrm{I}(\mathrm{t})=\mathrm{dQ} / \mathrm{dt}=\mathrm{d}\left(6 \mathrm{t}^{2}+9 \mathrm{t}+4\right) / \mathrm{dt}
$$

Take the derivative with respect to t.

$$
\mathrm{I}(\mathrm{t})=12 \mathrm{t}+9
$$

To find the current at 3.00 seconds, just plug in 3.00 to t.

$$
\begin{aligned}
\mathrm{I}(3) & =36+9 \\
\rightarrow & =45 \mathrm{amps}(\mathrm{~A})
\end{aligned}
$$

2. Known values:

$$
\begin{aligned}
& \mathrm{V}=145 \text { volts } \\
& \mathrm{P}=90 \text { watts }
\end{aligned}
$$

To solve for the current in the bulb, we just have to use one of the power relationships that we know.

$$
\begin{aligned}
& \mathrm{P}=\mathrm{IV} \\
& \rightarrow \mathrm{I}=\mathrm{P} / \mathrm{V} \\
& \rightarrow=90 / 145 \\
& \rightarrow=0.621 \mathrm{amps}(\mathrm{~A})
\end{aligned}
$$

To solve for the resistance of the bulb, we must use another power relationship. $P=I^{2} R$
$\rightarrow \mathrm{R}=\mathrm{P} / \mathrm{I}^{2}$
$\rightarrow=90 /(0.621)^{2}$
$\rightarrow=233.38$ ohms (\square)
3. Known values:
$\mathrm{R}_{1}=10 \square, \mathrm{R}_{2}=3 \square, \mathrm{R}_{3}=4 \square$, and $\mathrm{R}_{4}=6 \square$
$\mathrm{V}=14$ volts
First, we need to condense R_{3} and R_{4}, which are parallel to each other.

$$
\begin{aligned}
\mathrm{R}_{\text {parallel }} & =\left(\boldsymbol{\Sigma}\left(\mathrm{R}_{\mathrm{i}}\right)^{-1}\right)^{-1}=((1 / 4)+(1 / 6))^{-1} \\
\rightarrow & =2.4 \text { ohms }(\square)
\end{aligned}
$$

Then, we can condense R_{1}, R_{2}, and $R_{\text {parallel }}$ as they are all in series with each other.

$$
\begin{aligned}
\mathrm{R}_{\text {series }} & =\boldsymbol{\Sigma} \mathrm{R}_{\mathrm{i}} \\
\rightarrow & =10+3+2.4 \\
\rightarrow & =15.4 \text { ohms }(\square)
\end{aligned}
$$

So, our $R_{\text {equivalent }}=15.4 \square$
To find the current, drawn from the battery, we just have to use $I=\Delta V / R$
$I=14 / 15.4$
$\rightarrow=0.91 \mathrm{amps}(\mathrm{A})$
To get the power drawn from the battery, we can use $\mathrm{P}=\mathrm{I} \triangle \mathrm{V}$ $\mathrm{P}=0.91 * 14$
$\rightarrow=12.74$ Watts

